100% Discount || Deployment of Machine Learning Models

    Telegram Messenger | LinkedIn

    Deployment of Machine Learning Models



    • Machine Learning Basics, including model building process
    • Deep learning basics and neural networks training process
    • Computer vision basics, including ConvNets, transfer learning and pre-trained models architectures


    This course is for AI and ML Engineers, Practitioners and Researchers who already built an awesome Deep Learning model, and they have a great idea for an app. But they discovered that it is not straight forward to deploy their model in a production App. Another example, say you want to build a robot that uses the Camera sensor to perceive the surrounding environment, build a map of it and eventually navigate it. Here also you discover that you still have a long Journey to go after your model is already performing great on your training machine. Finally, Software Engineers, who have their primary job is to build a working system or an app, often find themselves in a situation where they need to integrate an AI model in their software, which happens a lot today with the expansion of AI applications. They might get this model from a research team in their firm or company, or even use an API or pre-trained model on the internet to do their task.

    We cover all those deployment scenarios, covering the journey from working trained model to an optimized deployed model. Our focus will be on CV deployment mainly. We cover Mobile deployment like on Android devices, Edge deployment on Embedded boards like Rasperry Pi, and Browser deployment where your AI model is running in the browser like Chrome, Edge, Safari or any other browser. Also, we cover server deployment scenarios, which are often found in highly scalable apps and systems with millions of users, and also in industrial scenarios like AI visual inspection in factories.

    While the course is mostly practical, focusing on “How” things are done and the best way of doing it, we cover also some theoretical parts about the “what” and “why” those techniques are used.

    This requires sometimes to understand new types of convolution operations that are optimized for speed and memory, or understanding some model compression techniques that makes them suitable for Embedded and Edge deployments, which was not in scope during building the initial model that was already performing great.

    Who this course is for:

    • Software Engineers
    • Data Scientists
    • Computer Vision Engineers
    • Machine Learning Engineers

    Get this Deal

    Get this Deal

    #Deployment #Machine #Learning #Models #Get this Deal
    تخفيضات,كوبونات,كوبون,عروض,كوبون كل يوم
    Get this Deal,Get this Deal
    udemy sale,udemy for business,udemy discount,udemy gutschein,business administration,discount factor,course deutsch,course catalogue,udemy course discount,javascript courses online,javascript course,freebies,toefl speaking,excel courses online,excel courses,excel templates dashboard,software engineering course online,software engineering course,

    Related articles